Surface salt bridges modulate the DNA site size of bacterial histone-like HU proteins.

نویسندگان

  • Edwin Kamau
  • Nick D Tsihlis
  • L Alice Simmons
  • Anne Grove
چکیده

Bacterial histone-like DNA-binding proteins are best known for their role in compacting the genomic DNA. Of these proteins, HU is ubiquitous and highly conserved across the eubacterial kingdom. Using the HBsu (Bacillus subtilis-encoded HU homologue) as a model, we explore here the molecular basis for the ability of some HU homologues to engage a longer approx. 35 bp DNA site as opposed to the much shorter sites reported for other homologues. Using electrophoretic mobility-shift assays, we show that the DNA site size for HBsu is approx. 10-13 bp and that a specific surface salt bridge limits the DNA site size for HBsu. Surface exposure of the highly conserved Lys3, achieved by substitution of its salt-bridging partner Asp26 with Ala, leads to enhanced DNA compaction by HBsu-D26A (where D26A stands for the mutant Asp26-->Ala), consistent with the interaction of Lys3 with the ends of a 25 bp duplex. Both HBsu and HBsu-D26A bend DNA, as demonstrated by their equivalent ability to promote ligase-mediated DNA cyclization, indicating that residues involved in mediating DNA kinks are unaltered in the mutant protein. We suggest that Lys3 is important for DNA wrapping due to its position at a distance from the DNA kinks where it can exert optimal leverage on flanking DNA and that participation of Lys3 in a surface salt bridge competes for its interaction with DNA phosphates, thereby reducing the occluded site size.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional evolution of bacterial histone-like HU proteins.

Bacterial histone-like HU proteins are critical to maintenance of the nucleoid structure. In addition, they participate in all DNA-dependent functions, including replication, repair, recombination and gene regulation. In these capacities, their function is typically architectural, inducing a specific DNA topology that promotes assembly of higher-order nucleo-protein structures. Although HU prot...

متن کامل

Rapid purification of HU protein from Halobacillus karajensis

The histone-like protein HU is the most-abundant DNA-binding protein in bacteria. The HU protein non-specifically binds and bends DNA as a hetero- or homodimer, and can participate in DNA supercoiling and DNA condensation. It also takes part in DNA functions such as replication, recombination, and repair. HU does not recognize any specific sequences but shows a certain degree of specificity to ...

متن کامل

Neisseria conserved hypothetical protein DMP12 is a DNA mimic that binds to histone-like HU protein

DNA mimic proteins are unique factors that control the DNA-binding activity of target proteins by directly occupying their DNA-binding sites. To date, only a few DNA mimic proteins have been reported and their functions analyzed. Here, we present evidence that the Neisseria conserved hypothetical protein DMP12 should be added to this list. Our gel filtration and analytical ultracentrifugation r...

متن کامل

Structural basis of the high thermal stability of the histone-like HU protein from the mollicute Spiroplasma melliferum KC3

The three-dimensional structure of the histone-like HU protein from the mycoplasma Spiroplasma melliferum KC3 (HUSpm) was determined at 1.4 Å resolution, and the thermal stability of the protein was evaluated by differential scanning calorimetry. A detailed analysis revealed that the three-dimensional structure of the HUSpm dimer is similar to that of its bacterial homologues but is characteriz...

متن کامل

DNA organization by the apicoplast-targeted bacterial histone-like protein of Plasmodium falciparum

Apicomplexans, including the pathogens Plasmodium and Toxoplasma, carry a nonphotosynthetic plastid of secondary endosymbiotic origin called the apicoplast. The P. falciparum apicoplast contains a 35 kb, circular DNA genome with limited coding capacity that lacks genes encoding proteins for DNA organization and replication. We report identification of a nuclear-encoded bacterial histone-like pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 390 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2005